7 Oct 2012 mjg59   » (Master)

Handling UEFI Secure Boot in smaller distributions

The plan for supporting UEFI Secure Boot in Fedora is still pretty much as originally planned, but it's dependent upon building a binary which has the Fedora key embedded, and then getting that binary signed by Microsoft. Easy enough for us to do, but not necessarily practical for smaller distributions. There's a few possible solutions for them.

  • Require that Secure Boot be disabled

    Not ideal. The UI for doing this is going to vary significantly between machines, making it difficult to document. It also means that the security benefits of Secure Boot are lost.

  • Require that the machine be placed in Setup Mode

    Clearing the enrolled Platform Key results in the system transitioning into Setup Mode, and from then on new keys can be enrolled into the key database until a new Platform Key is enrolled. Distributions could ship an unsigned bootloader that then writes the distribution keys into the database - James Bottomley has an example here. This means that the distribution can still benefit from Secure Boot, but otherwise has the same downside that the UI for doing this will vary between machines.

  • Ship with a signed bootloader that can add keys to its own database

    This is more interesting. Suse's bootloader design involves the bootloader having its own key database, distinct from those provided by the UEFI specification. The bootloader will execute any second stage bootloaders signed with a key in that database. Since the bootloader is in charge of its own key enrolment, the bootloader is free to impose its own policy - including enrolling new keys off a filesystem.

I've taken Suse's code for key management and merged it into my own shim tree with a few changes. The significant difference is a second stage bootloader signed with an untrusted key will cause a UI to appear, rather than simply refusing to boot. This will permit the user to then navigate the available filesystems, choose a key and indicate that they want to enrol it. From then on, the bootloader will trust binaries signed with that key.

Distributions are then able to take an existing signed copy of shim and put it on their install media, along with a file containing their key. If a user attempts to boot then the boot will fail because the second stage bootloader isn't signed with a trusted key, but the user can then use the navigator and select the distribution's key file. After providing confirmation and rebooting, the second stage bootloader's signature will now be recognised and the installer will boot.

This has the advantage over the first two options that the UI is consistent, making it easier to document the install process. The primary disadvantage is that the distribution won't be able to rebuild shim and will have to ship a pre-compiled binary. This may well be unacceptable to distributions like Debian, but should still provide a viable approach for other distributions who are either unwilling or unable to deal with Microsoft themselves.

comment count unavailable comments

Syndicated 2012-10-07 20:37:55 from Matthew Garrett

Latest blog entries     Older blog entries

New Advogato Features

New HTML Parser: The long-awaited libxml2 based HTML parser code is live. It needs further work but already handles most markup better than the original parser.

Keep up with the latest Advogato features by reading the Advogato status blog.

If you're a C programmer with some spare time, take a look at the mod_virgule project page and help us with one of the tasks on the ToDo list!