mjg59 is currently certified at Master level.

Name: Matthew Garrett
Member since: 2002-01-08 11:35:36
Last Login: 2011-02-22 21:56:37

FOAF RDF Share This

Homepage: people.ucam.org/~mjg59/

Projects

Articles Posted by mjg59

Recent blog entries by mjg59

Syndication: RSS 2.0

It has been 0 days since the last significant security failure. It always will be.

So blah blah Superfish blah blah trivial MITM everything's broken.

Lenovo deserve criticism. The level of incompetence involved here is so staggering that it wouldn't be a gross injustice for the company to go under as a result[1]. But let's not pretend that this is some sort of isolated incident. As an industry, we don't care about user security. We will gladly ship products with known security failings and no plans to update them. We will produce devices that are locked down such that it's impossible for anybody else to fix our failures. We will hide behind vague denials, we will obfuscate the impact of flaws and we will deflect criticisms with announcements of new and shinier products that will make everything better.

It'd be wonderful to say that this is limited to the proprietary software industry. I would love to be able to argue that we respect users more in the free software world. But there are too many cases that demonstrate otherwise, even where we should have the opportunity to prove the benefits of open development. An obvious example is the smartphone market. Hardware vendors will frequently fail to provide timely security updates, and will cease to update devices entirely after a very short period of time. Fortunately there's a huge community of people willing to produce updated firmware. Phone manufacturer is never going to fix the latest OpenSSL flaw? As long as your phone can be unlocked, there's a reasonable chance that there's an updated version on the internet.

But this is let down by a kind of callous disregard for any deeper level of security. Almost every single third-party Android image is either unsigned or signed with the "test keys", a set of keys distributed with the Android source code. These keys are publicly available, and as such anybody can sign anything with them. If you configure your phone to allow you to install these images, anybody with physical access to your phone can replace your operating system. You've gained some level of security at the application level by giving up any real ability to trust your operating system.

This is symptomatic of our entire ecosystem. We're happy to tell people to disable security features in order to install third-party software. We're happy to tell people to download and build source code without providing any meaningful way to verify that it hasn't been tampered with. Install methods for popular utilities often still start "curl | sudo bash". This isn't good enough.

We can laugh at proprietary vendors engaging in dreadful security practices. We can feel smug about giving users the tools to choose their own level of security. But until we're actually making it straightforward for users to choose freedom without giving up security, we're not providing something meaningfully better - we're just providing the same shit sandwich on different bread.

[1] I don't see any way that they will, but it wouldn't upset me

comment count unavailable comments

Syndicated 2015-02-19 19:43:04 from Matthew Garrett

Intel Boot Guard, Coreboot and user freedom

PC World wrote an article on how the use of Intel Boot Guard by PC manufacturers is making it impossible for end-users to install replacement firmware such as Coreboot on their hardware. It's easy to interpret this as Intel acting to restrict competition in the firmware market, but the reality is actually a little more subtle than that.

UEFI Secure Boot as a specification is still unbroken, which makes attacking the underlying firmware much more attractive. We've seen several presentations at security conferences lately that have demonstrated vulnerabilities that permit modification of the firmware itself. Once you can insert arbitrary code in the firmware, Secure Boot doesn't do a great deal to protect you - the firmware could be modified to boot unsigned code, or even to modify your signed bootloader such that it backdoors the kernel on the fly.

But that's not all. Someone with physical access to your system could reflash your system. Even if you're paranoid enough that you X-ray your machine after every border crossing and verify that no additional components have been inserted, modified firmware could still be grabbing your disk encryption passphrase and stashing it somewhere for later examination.

Intel Boot Guard is intended to protect against this scenario. When your CPU starts up, it reads some code out of flash and executes it. With Intel Boot Guard, the CPU verifies a signature on that code before executing it[1]. The hash of the public half of the signing key is flashed into fuses on the CPU. It is the system vendor that owns this key and chooses to flash it into the CPU, not Intel.

This has genuine security benefits. It's no longer possible for an attacker to simply modify or replace the firmware - they have to find some other way to trick it into executing arbitrary code, and over time these will be closed off. But in the process, the system vendor has prevented the user from being able to make an informed choice to replace their system firmware.

The usual argument here is that in an increasingly hostile environment, opt-in security isn't sufficient - it's the role of the vendor to ensure that users are as protected as possible by default, and in this case all that's sacrificed is the ability for a few hobbyists to replace their system firmware. But this is a false dichotomy - UEFI Secure Boot demonstrated that it was entirely possible to produce a security solution that provided security benefits and still gave the user ultimate control over the code that their machine would execute.

To an extent the market will provide solutions to this. Vendors such as Purism will sell modern hardware without enabling Boot Guard. However, many people will buy hardware without consideration of this feature and only later become aware of what they've given up. It should never be necessary for someone to spend more money to purchase new hardware in order to obtain the freedom to run their choice of software. A future where users are obliged to run proprietary code because they can't afford another laptop is a dystopian one.

Intel should be congratulated for taking steps to make it more difficult for attackers to compromise system firmware, but criticised for doing so in such a way that vendors are forced to choose between security and freedom. The ability to control the software that your system runs is fundamental to Free Software, and we must reject solutions that provide security at the expense of that ability. As an industry we should endeavour to identify solutions that provide both freedom and security and work with vendors to make those solutions available, and as a movement we should be doing a better job of articulating why this freedom is a fundamental part of users being able to place trust in their property.

[1] It's slightly more complicated than that in reality, but the specifics really aren't that interesting.

comment count unavailable comments

Syndicated 2015-02-16 20:44:40 from Matthew Garrett

Hacker News metrics (first rough approach)

I'm not a huge fan of Hacker News[1]. My impression continues to be that it ends up promoting stories that align with the Silicon Valley narrative of meritocracy, technology will fix everything, regulation is the cancer killing agile startups, and discouraging stories that suggest that the world of technology is, broadly speaking, awful and we should all be ashamed of ourselves.

But as a good data-driven person[2], wouldn't it be nice to have numbers rather than just handwaving? In the absence of a good public dataset, I scraped Hacker Slide to get just over two months of data in the form of hourly snapshots of stories, their age, their score and their position. I then applied a trivial test:

  1. If the story is younger than any other story
  2. and the story has a higher score than that other story
  3. and the story has a worse ranking than that other story
  4. and at least one of these two stories is on the front page
then the story is considered to have been penalised.

(note: "penalised" can have several meanings. It may be due to explicit flagging, or it may be due to an automated system deciding that the story is controversial or appears to be supported by a voting ring. There may be other reasons. I haven't attempted to separate them, because for my purposes it doesn't matter. The algorithm is discussed here.)

Now, ideally I'd classify my dataset based on manual analysis and classification of stories, but I'm lazy (see [2]) and so just tried some keyword analysis:








Keyword Penalised Unpenalised
Women 13 4
Harass 2 0
Female 5 1
Intel 2 3
x86 3 4
ARM 3 4
Airplane 1 2
Startup 46 26


A few things to note:
  1. Lots of stories are penalised. Of the front page stories in my dataset, I count 3240 stories that have some kind of penalty applied, against 2848 that don't. The default seems to be that some kind of detection will kick in.
  2. Stories containing keywords that suggest they refer to issues around social justice appear more likely to be penalised than stories that refer to technical matters
  3. There are other topics that are also disproportionately likely to be penalised. That's interesting, but not really relevant - I'm not necessarily arguing that social issues are penalised out of an active desire to make them go away, merely that the existing ranking system tends to result in it happening anyway.

This clearly isn't an especially rigorous analysis, and in future I hope to do a better job. But for now the evidence appears consistent with my innate prejudice - the Hacker News ranking algorithm tends to penalise stories that address social issues. An interesting next step would be to attempt to infer whether the reasons for the penalties are similar between different categories of penalised stories[3], but I'm not sure how practical that is with the publicly available data.

(Raw data is here, penalised stories are here, unpenalised stories are here)


[1] Moving to San Francisco has resulted in it making more sense, but really that just makes me even more depressed.
[2] Ha ha like fuck my PhD's in biology
[3] Perhaps stories about startups tend to get penalised because of voter ring detection from people trying to promote their startup, while stories about social issues tend to get penalised because of controversy detection?

comment count unavailable comments

Syndicated 2014-10-30 15:19:57 from Matthew Garrett

On joining the FSF board

I joined the board of directors of the Free Software Foundation a couple of weeks ago. I've been travelling a bunch since then, so haven't really had time to write about it. But since I'm currently waiting for a test job to finish, why not?

It's impossible to overstate how important free software is. A movement that began with a quest to work around a faulty printer is now our greatest defence against a world full of hostile actors. Without the ability to examine software, we can have no real faith that we haven't been put at risk by backdoors introduced through incompetence or malice. Without the freedom to modify software, we have no chance of updating it to deal with the new challenges that we face on a daily basis. Without the freedom to pass that modified software on to others, we are unable to help people who don't have the technical skills to protect themselves.

Free software isn't sufficient for building a trustworthy computing environment, one that not merely protects the user but respects the user. But it is necessary for that, and that's why I continue to evangelise on its behalf at every opportunity.

However.

Free software has a problem. It's natural to write software to satisfy our own needs, but in doing so we write software that doesn't provide as much benefit to people who have different needs. We need to listen to others, improve our knowledge of their requirements and ensure that they are in a position to benefit from the freedoms we espouse. And that means building diverse communities, communities that are inclusive regardless of people's race, gender, sexuality or economic background. Free software that ends up designed primarily to meet the needs of well-off white men is a failure. We do not improve the world by ignoring the majority of people in it. To do that, we need to listen to others. And to do that, we need to ensure that our community is accessible to everybody.

That's not the case right now. We are a community that is disproportionately male, disproportionately white, disproportionately rich. This is made strikingly obvious by looking at the composition of the FSF board, a body made up entirely of white men. In joining the board, I have perpetuated this. I do not bring new experiences. I do not bring an understanding of an entirely different set of problems. I do not serve as an inspiration to groups currently under-represented in our communities. I am, in short, a hypocrite.

So why did I do it? Why have I joined an organisation whose founder I publicly criticised for making sexist jokes in a conference presentation? I'm afraid that my answer may not seem convincing, but in the end it boils down to feeling that I can make more of a difference from within than from outside. I am now in a position to ensure that the board never forgets to consider diversity when making decisions. I am in a position to advocate for programs that build us stronger, more representative communities. I am in a position to take responsibility for our failings and try to do better in future.

People can justifiably conclude that I'm making excuses, and I can make no argument against that other than to be asked to be judged by my actions. I hope to be able to look back at my time with the FSF and believe that I helped make a positive difference. But maybe this is hubris. Maybe I am just perpetuating the status quo. If so, I absolutely deserve criticism for my choices. We'll find out in a few years.

comment count unavailable comments

Syndicated 2014-10-30 00:45:32 from Matthew Garrett

Linux Container Security

First, read these slides. Done? Good.

Hypervisors present a smaller attack surface than containers. This is somewhat mitigated in containers by using seccomp, selinux and restricting capabilities in order to reduce the number of kernel entry points that untrusted code can touch, but even so there is simply a greater quantity of privileged code available to untrusted apps in a container environment when compared to a hypervisor environment[1].

Does this mean containers provide reduced security? That's an arguable point. In the event of a new kernel vulnerability, container-based deployments merely need to upgrade the kernel on the host and restart all the containers. Full VMs need to upgrade the kernel in each individual image, which takes longer and may be delayed due to the additional disruption. In the event of a flaw in some remotely accessible code running in your image, an attacker's ability to cause further damage may be restricted by the existing seccomp and capabilities configuration in a container. They may be able to escalate to a more privileged user in a full VM.

I'm not really compelled by either of these arguments. Both argue that the security of your container is improved, but in almost all cases exploiting these vulnerabilities would require that an attacker already be able to run arbitrary code in your container. Many container deployments are task-specific rather than running a full system, and in that case your attacker is already able to compromise pretty much everything within the container. The argument's stronger in the Virtual Private Server case, but there you're trading that off against losing some other security features - sure, you're deploying seccomp, but you can't use selinux inside your container, because the policy isn't per-namespace[2].

So that seems like kind of a wash - there's maybe marginal increases in practical security for certain kinds of deployment, and perhaps marginal decreases for others. We end up coming back to the attack surface, and it seems inevitable that that's always going to be larger in container environments. The question is, does it matter? If the larger attack surface still only results in one more vulnerability per thousand years, you probably don't care. The aim isn't to get containers to the same level of security as hypervisors, it's to get them close enough that the difference doesn't matter.

I don't think we're there yet. Searching the kernel for bugs triggered by Trinity shows plenty of cases where the kernel screws up from unprivileged input[3]. A sufficiently strong seccomp policy plus tight restrictions on the ability of a container to touch /proc, /sys and /dev helps a lot here, but it's not full coverage. The presentation I linked to at the top of this post suggests using the grsec patches - these will tend to mitigate several (but not all) kernel vulnerabilities, but there's tradeoffs in (a) ease of management (having to build your own kernels) and (b) performance (several of the grsec options reduce performance).

But this isn't intended as a complaint. Or, rather, it is, just not about security. I suspect containers can be made sufficiently secure that the attack surface size doesn't matter. But who's going to do that work? As mentioned, modern container deployment tools make use of a number of kernel security features. But there's been something of a dearth of contributions from the companies who sell container-based services. Meaningful work here would include things like:


  • Strong auditing and aggressive fuzzing of containers under realistic configurations
  • Support for meaningful nesting of Linux Security Modules in namespaces
  • Introspection of container state and (more difficult) the host OS itself in order to identify compromises

These aren't easy jobs, but they're important, and I'm hoping that the lack of obvious development in areas like this is merely a symptom of the youth of the technology rather than a lack of meaningful desire to make things better. But until things improve, it's going to be far too easy to write containers off as a "convenient, cheap, secure: choose two" tradeoff. That's not a winning strategy.

[1] Companies using hypervisors! Audit your qemu setup to ensure that you're not providing more emulated hardware than necessary to your guests. If you're using KVM, ensure that you're using sVirt (either selinux or apparmor backed) in order to restrict qemu's privileges.
[2] There's apparently some support for loading per-namespace Apparmor policies, but that means that the process is no longer confined by the sVirt policy
[3] To be fair, last time I ran Trinity under Docker under a VM, it ended up killing my host. Glass houses, etc.

comment count unavailable comments

Syndicated 2014-10-23 07:47:36 from Matthew Garrett

411 older entries...

 

mjg59 certified others as follows:

  • mjg59 certified mjg59 as Apprentice
  • mjg59 certified crhodes as Journeyer
  • mjg59 certified mk as Apprentice
  • mjg59 certified hanna as Apprentice
  • mjg59 certified adw as Apprentice
  • mjg59 certified cjwatson as Journeyer
  • mjg59 certified val as Master
  • mjg59 certified davej as Master
  • mjg59 certified dwmw2 as Master
  • mjg59 certified rml as Master
  • mjg59 certified nymia as Journeyer
  • mjg59 certified alp as Master
  • mjg59 certified pippin as Master
  • mjg59 certified ta0kira as Apprentice
  • mjg59 certified teknopup as Apprentice
  • mjg59 certified mostafadaneshvar as Apprentice
  • mjg59 certified lobo as Apprentice
  • mjg59 certified RomanK as Apprentice

Others have certified mjg59 as follows:

  • mjg59 certified mjg59 as Apprentice
  • crhodes certified mjg59 as Master
  • mk certified mjg59 as Journeyer
  • ncm certified mjg59 as Master
  • ak certified mjg59 as Journeyer
  • fxn certified mjg59 as Journeyer
  • cjwatson certified mjg59 as Journeyer
  • adw certified mjg59 as Journeyer
  • nixnut certified mjg59 as Journeyer
  • moray certified mjg59 as Journeyer
  • hanna certified mjg59 as Journeyer
  • Stevey certified mjg59 as Journeyer
  • pencechp certified mjg59 as Master
  • elanthis certified mjg59 as Journeyer
  • murrayc certified mjg59 as Journeyer
  • RossBurton certified mjg59 as Journeyer
  • jamesh certified mjg59 as Journeyer
  • mdupont certified mjg59 as Journeyer
  • polak certified mjg59 as Journeyer
  • glasseyes certified mjg59 as Journeyer
  • amck certified mjg59 as Master
  • dpash certified mjg59 as Journeyer
  • ads certified mjg59 as Journeyer
  • behdad certified mjg59 as Journeyer
  • mascot certified mjg59 as Master
  • cinamod certified mjg59 as Master
  • alp certified mjg59 as Master
  • mako certified mjg59 as Master
  • yosch certified mjg59 as Master
  • eopadoan certified mjg59 as Master
  • vern certified mjg59 as Master
  • henrique certified mjg59 as Master
  • kwa certified mjg59 as Master
  • ianweller certified mjg59 as Master
  • mattl certified mjg59 as Master
  • hypatia certified mjg59 as Master
  • mishan certified mjg59 as Master
  • amigadave certified mjg59 as Master
  • maco certified mjg59 as Master

[ Certification disabled because you're not logged in. ]

New Advogato Features

New HTML Parser: The long-awaited libxml2 based HTML parser code is live. It needs further work but already handles most markup better than the original parser.

Keep up with the latest Advogato features by reading the Advogato status blog.

If you're a C programmer with some spare time, take a look at the mod_virgule project page and help us with one of the tasks on the ToDo list!

X
Share this page