Recent blog entries for LaForge

33C3 talk on dissecting cellular modems

Yesterday, together with Holger 'zecke' Freyther, I co-presented at 33C3 about Dissectiong modern (3G/4G) cellular modems.

This presentation covers some of our recent explorations into a specific type of 3G/4G cellular modems, which next to the regular modem/baseband processor also contain a Cortex-A5 core that (unexpectedly) runs Linux.

We want to use such modems for building self-contained M2M devices that run the entire application inside the modem itself, without any external needs except electrical power, SIM card and antenna.

Next to that, they also pose an ideal platform for testing the Osmocom network-side projects for running GSM, GPRS, EDGE, UMTS and HSPA cellular networks.

You can find the Slides and the Video recordings in case you're interested in more details about our work.

The results of our reverse engineering can be found in the wiki at http://osmocom.org/projects/quectel-modems/wiki together with links to the various git repositories containing related tools.

As with all the many projects that I happen to end up doing, it would be great to get more people contributing to them. If you're interested in cellular technology and want to help out, feel free to register at the osmocom.org site and start adding/updating/correcting information to the wiki.

You can e.g. help by

  • playing with the modem and documenting your findings
  • reviewing the source code released by Qualcomm + Quectel and documenting your findings
  • help us to create a working OE build with our own kernel and rootfs images as well as opkg package feeds for the modems
  • help reverse engineering DIAG and QMI protocols as well as the open source programs to interact with them

Syndicated 2016-12-30 00:00:00 from LaForge's home page

Contribute to Osmocom 3.5G and receive a free femtocell

In 2016, Osmocom gained initial 3.5G support with osmo-iuh and the Iu interface extensions of our libmsc and OsmoSGSN coede. This means you can run your own small open source 3.5G cellular network for SMS, Voice and Data services.

However, the project needs more contributors: Become an active member in the Osmocom development community and get your nano3G femtocell for free.

I'm happy to announce that my company sysmocom hereby issues a call for proposals to the general public. Please describe in a short proposal how you would help us improving the Osmocom project if you were to receive one of those free femtocells.

Details of this proposal can be found at https://sysmocom.de/downloads/accelerate_3g5_cfp.pdf

Please contact mailto:accelerate3g5@sysmocom.de in case of any questions.

Syndicated 2016-12-29 00:00:00 from LaForge's home page

Accessing 3GPP specs in PDF format

When you work with GSM/cellular systems, the definite resource are the specifications. They were originally released by ETSI, later by 3GPP.

The problem start with the fact that there are separate numbering schemes. Everyone in the cellular industry I know always uses the GSM/3GPP TS numbering scheme, i.e. something like 3GPP TS 44.008. However, ETSI assigns its own numbers to the specs, like ETSI TS 144008. Now in most cases, it is as simple s removing the '.' and prefixing the '1' in the beginning. However, that's not always true and there are exceptions such as 3GPP TS 01.01 mapping to ETSI TS 101855. To make things harder, there doesn't seem to be a machine-readable translation table betwen the spec numbers, but there's a website for spec number conversion at http://webapp.etsi.org/key/queryform.asp

When I started to work on GSM related topics somewhere between my work at Openmoko and the start of the OpenBSC project, I manually downloaded the PDF files of GSM specifications from the ETSI website. This was a cumbersome process, as you had to enter the spec number (e.g. TS 04.08) in a search window, look for the latest version in the search results, click on that and then click again for accessing the PDF file (rather than a proprietary Microsoft Word file).

At some point a poor girlfriend of mine was kind enough to do this manual process for each and every 3GPP spec, and then create a corresponding symbolic link so that you could type something like evince /spae/openmoko/gsm-specs/by_chapter/44.008.pdf into your command line and get instant access to the respective spec.

However, of course, this gets out of date over time, and by now almost a decade has passed without a systematic update of that archive.

To the rescue, 3GPP started at some long time ago to not only provide the obnoxious M$ Word DOC files, but have deep links to ETSI. So you could go to http://www.3gpp.org/DynaReport/44-series.htm and then click on 44.008, and one further click you had the desired PDF, served by ETSI (3GPP apparently never provided PDF files).

However, in their infinite wisdom, at some point in 2016 the 3GPP webmaster decided to remove those deep links. Rather than a nice long list of released versions of a given spec, http://www.3gpp.org/DynaReport/44008.htm now points to some crappy JavaScript tabbed page, where you can click on the version number and then get a ZIP file with a single Word DOC file inside. You can hardly male it any more inconvenient and cumbersome. The PDF links would open immediately in modern browsers built-in JavaScript PDF viewer or your favorite PDF viewer. Single click to the information you want. But no, the PDF links had to go and replaced with ZIP file downloads that you first need to extract, and then open in something like LibreOffice, taking ages to load the document, rendering it improperly in a word processor. I don't want to edit the spec, I want to read it, sigh.

So since the usability of this 3GPP specification resource had been artificially crippled, I was annoyed sufficiently well to come up with a solution:

  • first create a complete mirror of all ETSI TS (technical specifications) by using a recursive wget on http://www.etsi.org/deliver/etsi_ts/
  • then use a shell script that utilizes pdfgrep and awk to determine the 3GPP specification number (it is written in the title on the first page of the document) and creating a sym-link. Now I have something like 44.008-4.0.0.pdf -> ts_144008v040000p.pdf

It's such a waste of resources to have to download all those files and then write a script using pdfgrep+awk to re-gain the same usability that the 3GPP chose to remove from their website. Now we can wait for ETSI to disable indexing/recursion on their server, and easy and quick spec access would be gone forever :/

Why does nobody care about efficiency these days?

If you're also an avid 3GPP spec reader, I'm publishing the rather trivial scripts used at http://git.osmocom.org/3gpp-etsi-pdf-links

If you have contacts to the 3GPP webmaster, please try to motivate them to reinstate the direct PDF links.

Syndicated 2016-12-16 00:00:00 from LaForge's home page

Open Hardware IEEE 802.15.4 adapter "ATUSB" available again

Many years ago, in the aftermath of Openmoko shutting down, fellow former Linux kernel hacker Werner Almesberger was working on an IEEE 802.15.4 (WPAN) adapter for the Ben Nanonote.

As a spin-off to that, the ATUSB device was designed: A general-purpose open hardware (and FOSS firmware + driver) IEEE 802.15.4 adapter that can be plugged into any USB port.

/images/atusb.jpg

This adapter has received a mainline linux kernel driver written by Werner Almesberger and Stefan Schmidt, which was eventually merged into mainline Linux in May 2015 (kernel v4.2 and later).

Earlier in 2016, Stefan Schmidt (the current ATUSB Linux driver maintainer) approached me about the situation that ATUSB hardware was frequently asked for, but currently unavailable in its physical/manufactured form. As we run a shop with smaller electronics items for the wider Osmocom community at sysmocom, and we also frequently deal with contract manufacturers for low-volume electronics like the SIMtrace device anyway, it was easy to say "yes, we'll do it".

As a result, ready-built, programmed and tested ATUSB devices are now finally available from the sysmocom webshop

Note: I was never involved with the development of the ATUSB hardware, firmware or driver software at any point in time. All credits go to Werner, Stefan and other contributors around ATUSB.

Syndicated 2016-12-07 00:00:00 from LaForge's home page

The IT security culture, hackers industry consortiums

In a previous life I used to do a lot of IT security work, probably even at a time when most people had no idea what IT security actually is. I grew up with the Chaos Computer Club, as it was a great place to meet people with common interests, skills and ethics. People were hacking (aka 'doing security research') for fun, to grow their skills, to advance society, to point out corporate stupidities and to raise awareness about issues.

I've always shared any results worth noting with the general public. Whether it was in RFID security, on GSM security, TETRA security, etc.

Even more so, I always shared the tools, creating free software implementations of systems that - at that time - were very difficult to impossible to access unless you worked for the vendors of related device, who obviously had a different agenda then to disclose security concerns to the general public.

Publishing security related findings at related conferences can be interpreted in two ways:

On the one hand, presenting at a major event will add to your credibility and reputation. That's a nice byproduct, but that shouldn't be the primarily reason, unless you're some kind of a egocentric stage addict.

On the other hand, presenting findings or giving any kind of presentation or lecture at an event is a statement of support for that event. When I submit a presentation at a given event, I think carefully if that topic actually matches the event.

The reason that I didn't submit any talks in recent years at CCC events is not that I didn't do technically exciting stuff that I could talk about - or that I wouldn't have the reputation that would make people consider my submission in the programme committee. I just thought there was nothing in my work relevant enough to bother the CCC attendees with.

So when Holger 'zecke' Freyther and I chose to present about our recent journeys into exploring modern cellular modems at the annual Chaos Communications Congress, we did so because the CCC Congress is the right audience for this talk. We did so, because we think the people there are the kind of community of like-minded spirits that we would like to contribute to. Whom we would like to give something back, for the many years of excellent presentations and conversations had.

So far so good.

However, in 2016, something happened that I haven't seen yet in my 17 years of speaking at Free Software, Linux, IT Security and other conferences: A select industry group (in this case the GSMA) asking me out of the blue to give them the talk one month in advance at a private industry event.

I could hardly believe it. How could they? Who am I? Am I spending sleepless nights and non-existing spare time into security research of cellular modems to give a free presentation to corporate guys at a closed industry meeting? The same kind of industries that create the problems in the first place, and who don't get their act together in building secure devices that respect people's privacy? Certainly not. I spend sleepless nights of hacking because I want to share the results with my friends. To share it with people who have the same passion, whom I respect and trust. To help my fellow hackers to understand technology one step more.

If that kind of request to undermine the researcher/authors initial publication among friends is happening to me, I'm quite sure it must be happening to other speakers at the 33C3 or other events, too. And that makes me very sad. I think the initial publication is something that connects the speaker/author with his audience.

Let's hope the researchers/hackers/speakers have sufficiently strong ethics to refuse such requests. If certain findings are initially published at a certain conference, then that is the initial publication. Period. Sure, you can ask afterwards if an author wants to repeat the presentation (or a similar one) at other events. But pre-empting the initial publication? Certainly not with me.

I offered the GSMA that I could talk on the importance of having FOSS implementations of cellular protocol stacks as enabler for security research, but apparently this was not to their interest. Seems like all they wanted is an exclusive heads-up on work they neither commissioned or supported in any other way.

And btw, I don't think what Holger and I will present about is all that exciting in the first place. More or less the standard kind of security nightmares. By now we are all so numbed down by nobody considering security and/or privacy in design of IT systems, that is is hardly any news. IoT how it is done so far might very well be the doom of mankind. An unstoppable tsunami of insecure and privacy-invading devices, built on ever more complex technology with way too many security issues. We shall henceforth call IoT the Industry of Thoughtlessness.

Syndicated 2016-12-06 07:00:00 from LaForge's home page

Ten years anniversary of Openmoko

In 2006 I first visited Taiwan. The reason back then was Sean Moss-Pultz contacting me about a new Linux and Free Software based Phone that he wanted to do at FIC in Taiwan. This later became the Neo1973 and the Openmoko project and finally became part of both Free Software as well as smartphone history.

Ten years later, it might be worth to share a bit of a retrospective.

It was about building a smartphone before Android or the iPhone existed or even were announced. It was about doing things "right" from a Free Software point of view, with FOSS requirements going all the way down to component selection of each part of the electrical design.

Of course it was quite crazy in many ways. First of all, it was a bunch of white, long-nosed western guys in Taiwan, starting a company around Linux and Free Software, at a time where that was not really well-perceived in the embedded and consumer electronics world yet.

It was also crazy in terms of the many cultural 'impedance mismatches', and I think at some point it might even be worth to write a book about the many stories we experienced. The biggest problem here is of course that I wouldn't want to expose any of the companies or people in the many instances something went wrong. So probably it will remain a secret to those present at the time :/

In any case, it was a great project and definitely one of the most exciting (albeit busy) times in my professional career so far. It was also great that I could involve many friends and FOSS-compatriots from other projects in Openmoko, such as Holger Freyther, Mickey Lauer, Stefan Schmidt, Daniel Willmann, Joachim Steiger, Werner Almesberger, Milosch Meriac and others. I am happy to still work on a daily basis with some of that group, while others have moved on to other areas.

I think we all had a lot of fun, learned a lot (not only about Taiwan), and were working really hard to get the hardware and software into shape. However, the constantly growing scope, the [for western terms] quite unclear and constantly changing funding/budget situation and the many changes in direction have ultimately lead to missing the market opportunity. At the time the iPhone and later Android entered the market, it was too late for a small crazy Taiwanese group of FOSS-enthusiastic hackers to still have a major impact on the landscape of Smartphones. We tried our best, but in the end, after a lot of hype and publicity, it never was a commercial success.

What's more sad to me than the lack of commercial success is also the lack of successful free software that resulted. Sure, there were some u-boot and linux kernel drivers that got merged mainline, but none of the three generations of UI stacks (GTK, Qt or EFL based), nor the GSM Modem abstraction gsmd/libgsmd nor middleware (freesmartphone.org) has manage to survive the end of the Openmoko company, despite having deserved to survive.

Probably the most important part that survived Openmoko was the pioneering spirit of building free software based phones. This spirit has inspired pure volunteer based projects like GTA04/Openphoenux/Tinkerphone, who have achieved extraordinary results - but who are in a very small niche.

What does this mean in practise? We're stuck with a smartphone world in which we can hardly escape any vendor lock-in. It's virtually impossible in the non-free-software iPhone world, and it's difficult in the Android world. In 2016, we have more Linux based smartphones than ever - yet we have less freedom on them than ever before. Why?

  • the amount of hardware documentation on the processors and chipsets to day is typically less than 10 years ago. Back then, you could still get the full manual for the S3C2410/S3C2440/S3C6410 SoCs. Today, this is not possible for the application processors of any vendor
  • the tighter integration of application processor and baseband processor means that it is no longer possible on most phone designs to have the 'non-free baseband + free application processor' approach that we had at Openmoko. It might still be possible if you designed your own hardware, but it's impossible with any actually existing hardware in the market.
  • Google blurring the line between FOSS and proprietary code in the Android OS. Yes, there's AOSP - but how many features are lacking? And on how many real-world phones can you install it? Particularly with the Google Nexus line being EOL'd? One of the popular exceptions is probably Fairphone2 with it's alternative AOSP operating system, even though that's not the default of what they ship.
  • The many binary-only drivers / blobs, from the graphics stack to wifi to the cellular modem drivers. It's a nightmare and really scary if you look at all of that, e.g. at the binary blob downloads for Fairphone2 to get an idea about all the binary-only blobs on a relatively current Qualcomm SoC based design. That's compressed 70 Megabytes, probably as large as all of the software we had on the Openmoko devices back then...

So yes, the smartphone world is much more restricted, locked-down and proprietary than it was back in the Openmoko days. If we had been more successful then, that world might be quite different today. It was a lost opportunity to make the world embrace more freedom in terms of software and hardware. Without single-vendor lock-in and proprietary obstacles everywhere.

Syndicated 2016-11-27 15:00:00 from LaForge's home page

Open Hardware miniPCIe WWAN modem USB breakout board released

There are plenty of cellular modems on the market in the mPCIe form factor.

Playing with such modems is reasonably easy, you can simply insert them in a mPCIe slot of a laptop or an embedded device (soekris, pc-engines or the like).

However, many of those modems actually export interesting singals like digital PCM audio or UART ports on some of the mPCIe pins, both in standard and in non-standard ways. Those signals are inaccessible in those embedded devices or in your laptop.

So I built a small break-out board which performs the basic function of exposing the mPCIe USB signals on a USB mini-B socket, providing power supply to the mPCIe modem, offering a SIM card slot at the bottom, and exposing all additional pins of the mPCIe header on a standard 2.54mm pitch header for further experimentation.

/images/mpcie-breakout-front.jpg

The design of the board (including schematics and PCB layout design files) is available as open hardware under CC-BY-SA license terms. For more information see http://osmocom.org/projects/mpcie-breakout/wiki

If you don't want to build your own board, fully assembled and tested boards are available from http://shop.sysmocom.de/products/minipcie-wwan-modem-usb-break-out-board

Syndicated 2016-11-24 23:00:00 from LaForge's home page

Open Hardware Multi-Voltage USB UART board released

During the past 16 years I have been playing a lot with a variety of embedded devices.

One of the most important tasks for debugging or analyzing embedded devices is usually to get access to the serial console on the UART of the device. That UART is often exposed at whatever logic level the main CPU/SOC/uC is running on. For 5V and 3.3V that is easy, but for ever more and more unusual voltages I always had to build a custom cable or a custom level shifter.

In 2016, I finally couldn't resist any longer and built a multi-voltage USB UART adapter.

This board exposes two UARTs at a user-selectable voltage of 1.8, 2.3, 2.5, 2.8, 3.0 or 3.3V. It can also use whatever other logic voltage between 1.8 and 3.3V, if it can source a reference of that voltage from the target embedded board.

/images/mv-uart-front.jpg

Rather than just building one for myself, I released the design as open hardware under CC-BY-SA license terms. Full schematics + PCB layout design files are available. For more information see http://osmocom.org/projects/mv-uart/wiki

In case you don't want to build it from scratch, ready-made machine assembled boards are also made available from http://shop.sysmocom.de/products/multi-voltage-usb-dual-uart

Syndicated 2016-11-24 23:00:00 from LaForge's home page

(East) European motorbike tour on 20y old BMW F650ST

For many years I've always been wanting to do some motrobike riding accross the Alps, but somehow never managed to do so. It seems when in Germany I've always been too busy - contrary to the many motorbike tours around and accross Taiwan which I did during my frequent holidays there.

This year I finally took the opportunity to combine visiting some friends in Hungary and Bavaria with a nice tour starting from Berlin over Prague and Brno (CZ), Bratislava (SK) to Tata and Budapeest (HU), further along lake Balaton (HU) towards Maribor (SI) and finally accross the Grossglockner High Alpine Road (AT) to Salzburg and Bavaria before heading back to Berlin.

It was eight fun (but sometimes long) days riding. For some strange turn of luck, not a single drop of rain was encountered during all that time, travelling accross six countries.

The most interesting parts of the tour were:

  • Along the Elbe river from Pirna (DE) to Lovosice (CZ). Beautiful scenery along the river valey, most parts of the road immediately on either side of the river. Quite touristy on the German side, much more pleaant and quiet on the Czech side.
  • From Mosonmagyarovar via Gyor to Tata (all HU). Very little traffic alongside road '1'. Beatutil scenery with lots of agriculture and forests left and right.
  • The Nothern coast of Lake Balaton, particularly from Tinany to Keszthely (HU). Way too many tourists and traffic for my taste, but still very impressive to realize how large/long that lake really is.
  • From Maribor to Dravograd (SI) alongside the Drau/Drav river valley.
  • Finally, of course, the Grossglockner High Alpine Road, which reminded me in many ways of the high mountain tours I did in Taiwan. Not a big surprise, given that both lead you up to about 2500 meters above sea level.

Finally, I have to say I've been very happy with the performancee of my 1996 model BMW F 650ST bike, who has coincidentially just celebrated its 20ieth anniversary. I know it's an odd bike design (650cc single-cylinder with two spark plugs, ignition coils and two carburetors) but consider it an acquired taste ;)

I've also published a map with a track log of the trip

In one month from now, I should be reporting from motorbike tours in Taiwan on the equally trusted small Yamaha TW-225 - which of course plays in a totally different league ;)

Syndicated 2016-08-16 14:00:00 from LaForge's home page

Going to attend Electromagnetic Field 2016

Based on some encouragement from friends as well as my desire to find more time again to hang out at community events, I decided to attend Electromagnetic Field 2016 held in Guildford, UK from August 5th through 7th.

As I typically don't like just attending an event without contributing to it in some form, I submitted a couple of talks / workshops, all of which were accepted:

  • An overview talk about the Osmocom project
  • A Workshop on running your own cellular network using OpenBSC and related Osmocom software
  • A Workshop on tracing (U)SIM card communication using Osmocom SIMtrace

I believe the detailed schedule is still in the works, as I haven't yet been able to find any on the event website.

Looking forward to having a great time at EMF 2016. After attending Dutch and German hacker camps for almost 20 years, let's see how the Brits go about it!

Syndicated 2016-07-23 14:00:00 from LaForge's home page

276 older entries...

New Advogato Features

New HTML Parser: The long-awaited libxml2 based HTML parser code is live. It needs further work but already handles most markup better than the original parser.

Keep up with the latest Advogato features by reading the Advogato status blog.

If you're a C programmer with some spare time, take a look at the mod_virgule project page and help us with one of the tasks on the ToDo list!